Pharmaceutical Research, Vol. 10, No. 2, 1993

Review

Introduction to Backpropagation Neural

Network Computation

Randall J. Erb!

Neurocomputing is computer modeling based, in part, upon simulation of the structure and function
of the brain. Neural networks excel in pattern recognition, that is, the ability to recognize a set of
previously learned data. Although their use is rapidly growing in engineering, they are new to the
pharmaceutical community. This article introduces neurocomputing using the backpropagation net-

work (BPN).

KEY WORDS: neural network; neurocomputing backpropagation; modeling; pattern recognition;
pharmacodynamics; pharmacokinetics; classification.

INTRODUCTION

Neurocomputing is concerned with parallel, distributed,
adaptive information processing systems. These systems de-
velop information processing capabilities in response to ex-
posure to information (1). This computer modeling concept
is based, in part, on how biologists believe the brain learns to
recognize patterns. These computer models are known ge-
nerically as neural network models. The models that com-
pete with parametric statistical models excel at complex pat-
tern recognition or classification.

Although there are many neural network models, the
model that predominates in the area of pattern recognition or
classification is the feedforward/backpropagation network
(Fig. 1). This model is often referred to simply as a back-
propagation network, BPN. The BPN was originally intro-
duced by Werbos in 1974 (2) and owes much of its develop-
ment to Rumelhart (3).

THE BPN MODEL

Neural networks are characterized by architecture,
transfer function, and learning paradigm.

Architecture

The BPN architectural design consists of fully intercon-
nected rows of processing units called nodes (Fig. 1). In
neural network architectural structures, nodes are organized
into groups called layers. Input layers receive input. Output
layers produce output. Internal (or hidden) layers provide
the interconnections between input and output. The net in-
put into the jth layer node (ifj]) equals the sum of the outputs
from the prior ith layer (o[i]). Each input from a prior node

! Clinical Research Foundation—America, 11250 Corporate Ave-
nue, Lenexa, Kansas 66219.

is multiplied by a weighting factor (w[ji]) associated with that
particular interconnection;

net input to a node = i[j] = Z; {wlji] olil}

The BPN is fitted by training the network with known input/
output data sets, sometimes referred to as facts. The training
paradigm finds a set of weight values that minimizes the
error across the set of facts. During training, differences
between actual outputs and model predicted outputs are
propagated back through the architectural structure of the
network. When the network has been optimized, as deter-
mined by convergence criteria, a new set of facts, called a
test set, is fed forward through the network to evaluate the
trained network. If the network is validated, it can then be
used to predict outputs based on new input values.

BPNs can have multiple layers between the input layer
and the output layer. In practice, however, many networks
consist of only one hidden layer. This is because one layer is
usually sufficient to provide adequate mapping even for con-
tinuous outputs (4-6). One hidden layer is enough for most
pattern classification problems. In classification problems,
the output node with the largest value is the most probable
outcome for the given input pattern. An example of such a
network is represented in Fig. 2. In this example, the pattern
of EEG parameter inputs is used to determine the most prob-
able drug classification. Many different EEG parameters can
be used as inputs to predict the classification of the drug.
Each output node represents one drug class. The output
node that has the highest value is the drug class most likely
to have produced the array of EEG inputs.

If outputs need to be continuous functions of the inputs,
the model’s ability to fit the data might be improved by using
more than one hidden layer (7). An example of this input/
output relationship is shown in Fig. 3. The network esti-
mates the pharmacological effect profile (output vector) di-
rectly from the drug plasma profile (input vector). Each in-
put node represents a plasma concentration at a specified

165 0724-8741/93/0200-0165507.00/0 © 1993 Plenum Publishing Corporation



166

Erb

BIAS

WEIGHTED CONNECTION

INPUT LAYER
NODES

HIDDEN LAYER
NODES

WEIGHTED CONNECTION

OUTPUT LAYER
NODES

Fig. 1. Neural network schematic for a backpropagation neural network. Input into any
node is determined by the weighted sum of the preceding layer of nodes, including a
constant (bias) term. Nodal output is calculated using a sigmoid transfer function (T.F.).

time. Each output node represents a pharmacological effect
at a specified time. Note that the sampling times for the input
and output vectors need not be the same. Thus, time con-
stants, such as those describing hysteresis, are built into the
model with the training of the network.

The number of hidden nodes in a network can be critical
to network performance. If a hidden layer has too few nodes,
the network will lack the power it needs to classify patterns
in the data. If a hidden layer has too many nodes, patterns
will be memorized. Memorization handicaps the network’s
ability to generalize. The network has so many degrees of

INPUT VALUES

Alpha Beta Deita Theta
NEURAL NETWORK
Anxiolytic Depressant Neuroleptic Stimulant

OUTPUT VALUES
Fig. 2. Diagram of an example network designed to classify an input
pattern. Input values are EEG values. Each output node has a value
restricted between 0 and 1. The output node with the highest value
is the most probable outcome.

freedom that it responds with memorized facts rather than an
estimated value based upon the general features of the facts
(7). Memorization is analogous to fitting a set of N data
points with an N-degree polynomial. A perfect fit results, but
the fit’s ability to interpolate is diminished.

In networks, complete memorization occurs when the
number of hidden nodes equals the number of facts used to
train the network. Kolmogorov’s theorem predicts that

INPUT VALUES

cpt) S® B G G %y
NEURAL NETWORK
Effoct(1) Effoc(2) Effect(3} Effect(4)

OUTPUT VALUES
Fig. 3. Diagram of an example network designed to produce a con-
tinuous output relationship. In this example, each input node is the
drug plasma level at a specified time. Each output node represents
the effect of the drug at a specified time. The times of the output
nodes do not have to correspond to the input nodes.



Backpropagation Neural Network Computation

twice the number of input nodes plus one is enough hidden
nodes to compute any arbitrary continuous function (8). So
how does one determine the optimal number of hidden nodes
in a network? One strategy is to start with Kolmogorov’s
number of hidden nodes, then reduce the number of nodes
until a generalizing, working network is obtained (7). Linear
regression can be used to evaluate the fit of the model. Un-
fortunately, ‘‘generalizability’” has no comparable metric.

Transfer Function

The transfer function is a function that determines the
output value of the node based on the total value of its in-
puts. Although several functions have been used as transfer
functions, the most widely used is the sigmoid function
shown in Fig. 4. The sigmoid function output from each jth
hidden layer node (olj]) is characterized by the relationship

outputj] = olj] = 141 + exp(—il/h}

where i[j] is the sum of the inputs to the node. This function
has two attributes that make it particularly well suited as a
BPN transfer function. It is nonlinear in nature, and it is a
function that limits output to values between 0 and 1. This
sigmoidal normalization process provides for nonlinear out-
puts. It also prevents domination or overload effects in the
network that could result from single large input values.

Another advantage of the sigmoid function is that it fa-
cilitates rapid network learning. This is because learning
changes occur at the greatest rate midway in the 0-1 range,
where the derivative (slope) is at its maximum (see Training
Paradigm).

It is notable that during network training the sigmoid
transfer function tends to seek an output value near 0 or 1.
This represents the computer equivalent of a nonfire/fire sta-
tus of a nerve cell. The phenomenon reinforces the computer
model’s relationship to the biological nervous system.

Some networks, such as the one shown in Fig. 1, have
a bias term added to each node. These bias terms are a

11

167

special form of the connection weights that are also opti-
mized during the training process. This constant term for
each node helps scale the average input into a usable range

().

Training Paradigm

Training a network begins by randomly assigning
weighting factors for each node interconnection and bias
term. Next a fact is input through the network to produce an
output value(s) based upon the randomly assigned weight
values. New interconnect weights are then computed to re-
duce the total error until a minimum total error value is
obtained across the set of training facts. A new weight is
computed by adding a new weight change to it as follows:

New Weight Change = (Learning Rate) = (Error) +
(Momentum) =
(Last Weight Change)

Error is the difference between what an output value is with
current network parameters and what the output should be.
The Last Weight Change gives both size and direction to the
New Weight Change.

The Learning Rate is an adjustable factor that controls
the speed of the learning process. The higher the Learning
Rate, the faster the learning process. If the rate is too high,
however, oscillation in the weight change can impede con-
vergence to an optimal solution set. In contrast, if the Learn-
ing Rate is too low, the network can get caught in a local
error minimum. This can result in a less than optimal net-
work solution.

In general, network learning can be facilitated by start-
ing with a high Learning Rate. After training has begun, the
Learning Rate can be reduced periodically. This speeds
learning and reduces the probability that the network solu-
tion will settle into a nonoptimal, local error minimum.

The Momentum term is a proportionality constant that
has the effect of smoothing Weight Change oscillations dur-

ik

09 |

08 |

0.7 |

0.6

0S5 |-

04

OUTPUT FROM NODE

03

02 |

01 |

0 L

-6 -4 -2

0
TOTAL INPUT TO NODE

4 6

Fig. 4. A sigmoidal transfer function relates the input of a node to its output. The
function normalizes output between 0 and 1 and has nonlinear characteristics.



168

ing the optimization process. Small Momentum values help
prevent widely fluctuating New Weight Changes that can
impede the network’s approach to an optimal solution (8).

Networks can have many optimal solutions. The partic-
ular solution reached will depend, in part, on the order in
which data pairs are presented to the network. There are two
alternatives for the presentation of facts to the network dur-
ing training. Facts can be presented in the same order each
time or presented in random order. Since optimal solution of
a trained network may be biased by the order of presentation
to the network, it is usually best to present facts to the net-
work in random order during training.

How many and what kind of facts does a network need
in order to train properly? Too many facts is generally not a
problem. However, the number of facts should not exceed
ten times the number of connections (9). Remember that
before training, 10-20% of the facts should be randomly set
aside to be used for testing the fitted network. Facts should
be randomly distributed in the parameter space of the model.
Too many facts spatially clumped together or located on the
outer fringe of the range of the data set do not allow the
model to generalize well.

AN EXAMPLE OF A BPN MODEL: ESTIMATING
CREATININE CLEARANCE FROM GENDER, AGE,
WEIGHT, AND SERUM CREATININE

To illustrate the modeling process, a BPN was created
to estimate creatinine clearance (CL_,) based upon two pre-
viously defined relationships adapted from the review by
Lott and Hayton (10). The input parameters used were gen-
der, age, weight, and serum creatinine levels:

INPUT LAYER

HIDDEN LAYER

Erb

[140 — Age(years)] * Weight(kg)
72 % Serum Creatinine(mg/dL)

CL.(males) =

and

[140 — Age(years)] * Weight(kg)
85 * Serum Creatinine(mg/dL)

CL (females) =

The BPN (Fig. 5) was trained using 200 randomly generated,
simulated facts. The input value for gender was defined as
having a value of 0 for females or 1 for males. Age ranged
from 20 to 90 years. Weight ranged from 40 to 80 kg. Serum
creatinine ranged from 0.2 to 2.0 mg/dL. The BPN contained
seven hidden nodes. To test the effect of noise on the fitting
process, CL, values were calculated with =15% random
error added. The neural network software used to produce
the model was Neuroshell (Ward Systems Group, Inc.,
Frederick, MD).

After training, a linear regression fit of the fitted model,
comparing the actual output of the training facts to the net-
work-estimated output, produced an R? = 0.973. To test this
trained network, outputs for a completely new second set of
200 randomly generated input values (test set) were gener-
ated. R? between actual and BPN predicted CL_, values was
0.951 (Fig. 6). Figure 7 compares the percentage deviation
frequency response for the training set versus the test set. As
would be expected, the randomly distributed training set has
a (nearly) square distribution due to the even spread of the
random error. This square-shaped random distribution is
contrasted against the BPN frequency pattern that has
forced most of the output errors into the smaller, bell-shaped
error range (primarily between *6%). This demonstrates

OUTPUT LAYER

Fig. 5. Network schematic used for the calculation of creatinine clearance (CL_,) from
the inputs gender, age, weight, and serum creatinine (Serum Cr). T.F. is the sigmoid
transfer function. The network contains seven hidden notes (not all shown).



Backpropagation Neural Network Computation

400

169

350 -

300

250 |-

200

150

BPN Predicted CLer [ml/min]

100 |-

50

0 L

I .

0 100

200 300 400

Actual CLcr [ml/min]}

Fig. 6. Regression fit of 200 randomly generated facts used to test the fit of the trained
BPN model. R? = 0.951.

BPN ability to generalize and how it has managed to find a
weight connection pattern that attempts to minimize the ef-
fect of the random error.

Clearance equations were chosen to model because they
are straightforward and generally familiar. The creatinine
model also provided an opportunity to incorporate the gen-
der effect into a single model that had been previously de-
scribed by two separate equations. Based on the training set
and test set fits, the BPN clearly had little trouble determin-
ing the relationships between the variables. To be fair, how-

60

ever, the BPN model did have 8 bias terms and 35 connec-
tion weights to characterize the relationship, so a good fit is
not surprising.

GENERAL COMMENTS ABOUT NEURAL NETWORKS

A significant advantage of neural networks is that input
variables can be cross-correlated. This is juxtaposed to sta-
tistical methods for which cross-correlation can be a signif-
icant problem. Neural networks sort out data relationships

50 |-

&
(=]
1

Frequency of Occurence
w
=)
T

[
(=]
1

10 +

0 R

-15% -10% -5% —0%

5% 10% 15% 20% 15%

% Deviation from Actual CLcr Value
Fig. 7. Comparison of the distribution of the random error (as the percentage devi-
ation from actual) for the training set (bars) versus that of the test set (lines). The BPN
model’s ability to generalize compresses the deviation error toward the middle of the

training set distribution.



170

and incorporate the most information possible irrespective
of cross-correlations between input variables. This facili-
tates their ability to recognize patterns.

In the sense that neural network computing produces a
predictive model, it is an alternative to statistical methods.
In the areas of optimization, statistical methods are currently
superior to neurocomputing. This is because no methods
exist to find optimized input/output solution sets for neural
networks. Despite this limitation, neurocomputing competes
well with statistical methods in pattern recognition. This is
expecially true for problems involving systems containing
high levels of noise and variation (11). In fact, Miller e? al.
have described almost 300 neural network applications al-
ready in use (12).

Possible areas for the use of neurocomputing in the
pharmaceutical industry include elucidation of potential new
drug candidates, pharmacokinetic/pharmacodynamic model-
ing (PK/PD), in vitrolin vivo correlations, process control
and production, and clinical pharmacokinetics.

In drug discovery, for example, neural networks could
be used to determine the classification of a new drug (e.g.,
stimulant, neuroleptic, antidepressant, or anxiolytic) based
upon the EEG effects it produces (Fig. 2) (14). Here, the
ability of networks to find obscure patterns in large amounts
of noisy data becomes significant.

PK/PD models could be constructed with neural net-
works without prior consideration of number of compart-
ments. The modeling is strictly model independent. Simula-
tions by the author have demonstrated that hysteresis (the
delay in equilibration between the plasma and the effect
compartment) can be built into a model to predict temporal
drug effects directly from plasma-level data.

Although attempts to relate in vitro dissolution data to in
vivo response have not been very successful, a neural net-
work’s ability to provide N-dimensional spatial mapping
could lead to new predictive models that were not previously
possible.

Pharmaceutical product development and process
equipment control can be aided using neural networks (15—
17). Process variables, such as fill rates, dwell time, and
force of compression parameters in the tableting process, or
fermentation parameters are variables that could be moni-
tored and adjusted during production based upon network
controllers.

Neural networks could also be useful for describing
multiingredient formulation performance by mapping contin-
uous, nonlinear relationships between the amount of ingre-
dients and the physical characteristics of a dosage form (17).

Naturally, the possibility of using networks for clinical
pharmacokinetic modeling also represents itself as an obvi-
ous option (18).

APPENDIX: GETTING STARTED
ON NEUROCOMPUTING

Three textbooks that introduce neurocomputing in prac-
tical formats are: Neural Network PC Tools; A Practical
Guide (14), Handbook of Neural Computing Applications
(7), and Neurocomputing (1).

Of these, the first two texts offer a good place to start

Erb

because they are less technical and are practically oriented.
Indeed, with these texts and other reviews that are available
(4,19) the reader can get a workable understanding of neural
networks within a relatively short period of time.

With background from these texts, one can proceed to
neural network software packages currently available. No
computer programming knowledge is required to use these
software packages. Two inexpensive PC-based software
packages that provide user-friendly interfaces are Neuro-
shell (Ward Systems Group, Inc., Frederick, MD) and
Brainmaker (California Scientific Software, Grass Valley,
CA). Both programs are implementations of backpropaga-
tion neural networks. Users can begin the modeling process
almost immediately using their own data.

REFERENCES

1. R. Hecht-Nielsen. Neurocomputing, Addison-Wesley, Read-
ing, MA, 1990.

2. P.J. Werbos. Beyond Regression: New Tools for Prediction
and Analysis in Behavioral Sciences, Doctoral dissertation,
Appl. Math., Harvard University, Cambridge, MA, 1974.

3. D. E. Rumelhart and J. L. McClelland. Parallel Distributed
Processing, Explorations in the Microstructure of Cognition,
Vol. 1. Foundations, MIT Press, Cambridge, MA, 1986.

4. R. P. Lippman. An introduction to computing with neural nets.
IEEE ASSP Mag. April:4-22 (1987).

5. D. G. Bounds and P. J. Lloyd. A multilayer perceptron network
for the diagnosis of low back pain. In Proc. Second IEEE Int.
Conf. Neural Networks, San Diego, CA, July 24-27, 1988, pp.
11-481-11-489.

6. G. Cybenko. Approximations by superpositions of a sigmoidal
function. Math. Control Signals Syst. 2(4):303-314, (1989).

7. A. ). Maren, C. T. Harston, and R. M. Pap. Handbook of Neu-
ral Computing Applications, Academic Press, San Diego, CA,
1991, p. 239.

8. R. Hecht-Nielsen. Kolmogorov’s mapping neural network ex-
istence theorem. In Proc. First IEEE Int. Joint Conf. Neural
Nerworks, San Diego, CA, June 21-24, 1987, pp. 111-11-111-14.

9. Neuroshell™ Software Documentation Handbook, Ward Sys-
tems Group, Frederick, MD, 1990.

10. R. S. Lott and W. L. Hayton. Estimation of creatinine clear-
ance from serum creatinine concentration. Drug Intel. Clin.
Pharm. 12:140-150 (1978).

11. Defense Advanced Research Projects Agency Neural Network
Study. Comparison with other technologies. In Final Report,
AFCEA Int. Press (AIP), Oct. 1987, Feb. 1988, Chap. 19.

12. R. K. Miller, T. C. Walker, and A. M. Ryan. Neural Net Ap-
plications and Products, SEAl and Graeme, 1990.

13. J. Kuhlman and W. Wingender (eds.), Dose-Response Relation-
ships of Drugs, W. Zuckschwerdt Verlag, Munchen, 1990, pp.
157-167.

14. R. C. Eberhart and R. W. Dobbins (eds.), Neural Network PC
Tools: A Practical Guide, Academic Press, New York, 1990.

15. D. Elrod and R. Trenary. Applications of neural networks in
chemistry. 1. Prediction of electrophilic aromatic substitution
reactions. J. Chem. Inf. Comput. Sci. 30:477-484 (1990).

16. J. Thibault, V. Breusegem, and A. Cheruy. On-line prediction
of fermentation variables using neural networks. Biotechnol.
Bioeng. 36:1041-1048 (1990).

17. A. Hussain, X. Yu, and R. Johnson. Application of neural com-
puting in pharmaceutical product development. Pharm. Res.
8:1248-1257 (1991).

18. S. Allerheiligen and T. Luden. Initial evaluation of neural net-
works in clinical pharmacokinetics. Pharm. Res. 7:S-49 (1990).

19. C. Lau and B. Widrow. Neural networks II: Analysis, tech-
niques, and applications. Proc. IEEE Inst. Elec. Electron Eng.
78:1547-1549 (1990).



